首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13137篇
  免费   2322篇
  国内免费   3814篇
  2024年   17篇
  2023年   540篇
  2022年   459篇
  2021年   550篇
  2020年   781篇
  2019年   850篇
  2018年   892篇
  2017年   853篇
  2016年   839篇
  2015年   791篇
  2014年   838篇
  2013年   1103篇
  2012年   737篇
  2011年   843篇
  2010年   624篇
  2009年   727篇
  2008年   712篇
  2007年   777篇
  2006年   739篇
  2005年   580篇
  2004年   509篇
  2003年   488篇
  2002年   469篇
  2001年   420篇
  2000年   359篇
  1999年   325篇
  1998年   273篇
  1997年   231篇
  1996年   240篇
  1995年   215篇
  1994年   206篇
  1993年   175篇
  1992年   174篇
  1991年   141篇
  1990年   106篇
  1989年   99篇
  1988年   75篇
  1987年   64篇
  1986年   58篇
  1985年   71篇
  1984年   62篇
  1983年   35篇
  1982年   62篇
  1981年   31篇
  1980年   28篇
  1979年   30篇
  1978年   21篇
  1977年   13篇
  1976年   18篇
  1958年   10篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
41.
42.
《植物生态学报》2016,40(4):405
Aims
Plantations play important roles in modifying regional carbon budget and maintaining regional carbon balance. In this study, we assessed larch plantation (Larix gmelinii var. principis-rupprechtii) carbon dynamics in Weichang County from a perspective of the forest biomass-soil-wood-products chain. Our objectives were to elucidate the carbon sink capacity of larch plantation and the influences of biomass, soil and wood product pools on carbon balance.
Methods
CO2FIX model was used to evaluate the carbon storage and flow of larch plantation over a time span of 120 years. Input data for model were derived from practical investigations and published papers. We validated the simulated results and found that this model was suitable in the region and the simulated results were reliable.
Important findings
(1) Soil was the largest carbon pool for larch plantation and the wood product pool had the smallest carbon storage. Meanwhile, carbon storage in wood products gradually increased with time. (2) In a rotation of 50 years from secondary poplar-birch forest to larch plantation, 250 t C·hm-2 was sequestrated by the larch plantation. 70% of the carbon was transferred into soil in the form of litter and logging slash and the other 30% was transferred into wood products. (3) Larch plantation was a carbon sink during most of its growing period and turned to temporary carbon source when it was harvested. Larch plantation could sequestrate about 0.3 t C·hm-2·a-1 in the long term. Our results indicated the importance of wood product carbon pool in carbon dynamics of plantation, which facilitated our understanding in the carbon dynamics and capacity of plantation.  相似文献   
43.
44.
《Current biology : CB》2020,30(10):1801-1808.e5
  1. Download : Download high-res image (167KB)
  2. Download : Download full-size image
  相似文献   
45.
1. The effects of a moderate addition of nutrients (twofold N and threefold P) were examined during a 2‐year period to determine the response to nutrient addition in a meiofaunal community inhabiting sandy patches in a Mediterranean stream. 2. The pattern of meiofaunal assemblages exhibits a high degree of intra‐ and interannual variability. This pattern alternates between periods of hydrological stability and disturbances, such as floods and droughts, which is a characteristic of Mediterranean systems. 3. A before–after–control–impact (BACI) design was used to determine the outcome of the addition by comparing an upstream non‐enriched reach with an enriched downstream reach. Analysis of the study data by means of a nonparametric permutational procedure (permanova ) showed that fertilisation had a significant effect. Density and biomass values increased in the most abundant meiofaunal groups, including microcrustaceans, oligochaetes and chironomids. Microcrustaceans were the dominant group in the permanent meiofauna. 4. We also examined differences in microcrustacean secondary production in both reaches. Ostracods and cyclopoid copepods increased their secondary production in the impacted reach as a result of the nutrient addition. 5. Our study demonstrated that moderate nutrient enrichment can affect the biomass and production of stream meiofauna, but it is still unclear whether this effect was because of autotrophic or heterotrophic pathways.  相似文献   
46.
《植物生态学报》2016,40(2):140
Aims This study aimed to investigate the effects of branch returning on the growth of peach (Amygdalus persica "Chunmei/Maotao") saplings, soil enzyme activity, and soil contents of phenolic acids and amygdalin, thereby providing scientific evidence against the application of branch returning for peach trees. Methods One-year-old potted peach tree (Amygdalus persica "Chunmei/Maotao") was used in this study with four agricultural treatments applied, including soil coverage by fragmented peach tree branches (fragment treatment;1.5 and 22.5 g·kg-1) and applying leachate solutions of peach tree branches to soil (leachate treatment; 1.5 and 22.5 g·kg-1). No branch addition was used as control (CK). Solid phase extraction, high performance liquid chromatography (HPLC), biological high-throughput sequencing was used to determine the content of autotoxic substances, and microbial community structure in soil. Soil coverage and leachate solution treatments of 30 g and 450 g branches applied to the peach trees were described as 1.5 and 22.5 g·kg-1, respectively in this paper.Important findings Compared with CK, the phenolic acid and amygdalin contents significantly increased after both fragment and leachate treatments in high quantities (22.5 g·kg-1). Soil microbial community structure altered in both treatments, with the proportion of fungi (particularly Agaricomycetes, Tubeufia and Cystofilobasidiaceae) increased significantly and bacteria decreased accordingly. Invertase activity in both high-quantity treatments exceeded that in the CK significantly. The activity of catalase and urease was higher at first and then decreased relative to CK under high-quantity fragment and leachate treatments. Specifically, the effect of leachate treatment on enzyme activity was higher than the fragment treatment in the short term. Chlorophyll content, ground diameter (diameter of 5 cm from the ground) growth and net photosynthesis rate of plants were lower in high-quantity fragment and leachate treatments than those in CK, with earlier retardation of new shoot growth. We observed an increase in soil phenolic acids and enzymes in treatments in normal pruning quantity, while no inhibition effect was found on the tree growth. In conclusion, autotoxins (such as phenolic acid and amygdalin) inhibited the growth of peach trees both directly and indirectly through changing soil enzyme activity and microbial community.  相似文献   
47.
48.
Size-related changes in hydraulic architecture, carbon allocation and gas exchange of Sclerolobium paniculatum (Leguminosae), a dominant tree species in Neotropical savannas of central Brazil (Cerrado), were investigated to assess their potential role in the dieback of tall individuals. Trees greater than ∼6-m-tall exhibited more branch damage, larger numbers of dead individuals, higher wood density, greater leaf mass per area, lower leaf area to sapwood area ratio (LA/SA), lower stomatal conductance and lower net CO2 assimilation than small trees. Stem-specific hydraulic conductivity decreased, while leaf-specific hydraulic conductivity remained nearly constant, with increasing tree size because of lower LA/SA in larger trees. Leaves were substantially more vulnerable to embolism than stems. Large trees had lower maximum leaf hydraulic conductance ( K leaf) than small trees and all tree sizes exhibited lower K leaf at midday than at dawn. These size-related adjustments in hydraulic architecture and carbon allocation apparently incurred a large physiological cost: large trees received a lower return in carbon gain from their investment in stem and leaf biomass compared with small trees. Additionally, large trees may experience more severe water deficits in dry years due to lower capacity for buffering the effects of hydraulic path-length and soil water deficits.  相似文献   
49.
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号